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Abstract

The Lie superalgebra(2) and its class of irreducible representatidnsof
dimension 2 (p being a positive integer) are considered. The action of(Rg
generators on a basis B}, is given explicitly, and from here two realizations of
q(2) are determined. Thgg2) generators are realized as differential operators
in one variablex, and the basis vectors &f, as 2-arrays of polynomials in

x. Following such realizations, it is observed that the Hamiltonian of certain
physical models can be written in terms of #i@) generators. In particular,

the models given here as an example are the sphaleron model, the Moszkowski
model and the Jaynes—Cummings model. For each of these, it is shown how
theg(2) realization of the Hamiltonian is helpful in determining the spectrum.

PACS numbers: 02.28v, 11.30.Pb, 42.56-p

1. Introduction

Since their introduction in supersymmetry [1-3], Lie superalgebras and their irreducible
representations (simple modules) have been the subject of much attention in both
mathematical [4—6] and physics literature, where both finite [7—9] and infinite dimensional
representations [10-14] have been studied. When Kac obtained his classification [4] of simple
Lie superalgebras, he subdivided them into the classical Lie superalgebras and the Lie
superalgebras of Cartan type. The classical Lie superalgebras consist of the basic Lie
superalgebras-A{(m, n), B(m, n), C(n), D(m, n) and the exceptional on€¥?2, 1;«), G(3) and
F(4)—and the strange seri#¥n) and Q(n). The basic Lie superalgebras have made their
appearance in various physical models. As far as we know, the strange Lie superalgebras have
not been used in relation to any physical model or example. In this paper, we shall discuss the
strange Lie superalgebg(1) of rank 1; more precisely, we shall be dealing with its central
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extension which is usually denoted h{2) [15]. It will be shown thaty(2) has a class of
interesting representatiof’s labelled by a positive integer These representations allow for
certain realizations af(2), and it will be shown that these realizations, in turn, are appropriate
for the study of certain physical models: the so-called sphaleron model, the Moszkowski
model, and the Jaynes—Cummings model.

The strange Lie superalgebra§:) can be considered as a super-analoguglof).
Representations @f(n) have been studied from the mathematical point of view. In [15-17],
the finite dimensional irreduciblgaded representations @) have been determined together
with their characters, both in the so-called typical and atypical cases. These representations
possess the strange property that the multiplicity of the highest weight is in general greater
than 1 [16]. More recently, a new class of finite dimensional irreducible representatign$ of
was determined [18]. These representationsiargraded and thus they are not among the
ones classified by Penkov and Serganova [16]. However, they possess many other interesting
properties: the highest weight has multiplicity 1, they can be equipped with an inner product,
and in an apropriate context they can be considered as Fock spaces.

In the present paper we shall concentrate on these representations for the Lie superalgebra
q(2). The representations, are of dimension2(p is a positive integer). When decomposed
to the even subalgebid (2) of ¢(2), V), consists of the direct sum of twg (2) irreps: one
of dimensionp + 1 and the other of dimensign — 1. Having twogl(2) irreps of such
dimensions as part of an irreducible representation of another algebra (ng@)¢lwill help
in determining physical applications for the representations

The structure of this paper is as follows. In section 2, the algef2pnand its class
of representation¥,, are defined. In section 3, we shall discuss a relation between these
representations and certain representationso@f). Two realizations of(2) and of the
corresponding representatiovis will be stated in section 4. The appearance and usefullness
of these realizations in physical models will then be illustrated in the following sections: the
sphaleron model in section 5, the Moszkowski model in section 6 and the Jaynes—Cummings
model in section 7.

2. The Lie superalgebra ¢(2) and the representations V),

For the definition of;(n) and a corresponding class of representations, we refer to [18]. Here
we shall deal only with the cage= 2. The Lie superalgebtg2) has a basis consisting of four
even elements?j (i, j = 0,1) and four odd elementﬁlj (i, j = 0, 1), satisfying the bracket
relation

Lefo en] = 8ke™ — (—=1)7%uef” 1)

whereo, 6 € Zy = {0, 1}, andi, j, k,1 € {0, 1}. Here, [, ] stands for the Lie superalgebra
bracket, which could be a commutator or an anti-commutator, depending on the grading of
the elements considered. We write explicitly] [resp. {, }) if this stands for a commutator
(resp. anti-commutator). _

It is clear that the even part @f2) (i.e. the four elements with upper index equabjo
is the Lie algebragi(2). For convenience, a different notation will be introduced for the root
vectors, i.e. the elemenésj with i # j, since these elements can be interpreted as ‘creation
and annihilation operators’ fgi(2) [18]. So we put:

b* = el b~ =ed (2)

fr=ey =y 3)
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These operators satisfy certain triple relations (see [18, equations (8)—(11)]), and together with
their supercommutators they form a basig/().

The algebrag(2) has finite dimensional representations labelled by a positive integer
p. The representation spadg, arises as a quotient modulg, = V,/M, of an infinite
dimensional(2) moduleV, by its maximal submoduld/, [18]. The spacé/, is spanned
by the vectors

v = (b")kvo k=0,1,...
k1 ot )
wr =GN Mo k=12,...
whereug is a vacuum (or highest weight vector) satisfying:
€Qov0 = puo efovo = /PYo
e(l)lvo =0 ehvo =0 (5)

b vo= f vp=0.

The following actions in\7p of the creation and annihilation operatorsgnandw; can be
computed:

b o = vert brwp = w1

ok = west ffwe=0

b"vy =k(p—k+Du1

fToe=kyp vier —k(k — Dwy1

b™wi = /p vk-1+ (k= D(p —bHwp—1

fwg = pog—1 — (k — 1)/p wr-1.
In \7p, v, — /P wp is a primitive vector (the actions &f- and f~ on it are zero) generating
the submodulé,. The quotient module/, = V,/M, is therefore a finite dimensional

module. A set of basis vectors 07, together with the corresponding weight in the natural
basis(eo, €1) of the gl (2) weight space, is given by

(6)

vo P€o
v1, w1 (p—Deo+er
V2, W2 (p—2ep + 261
(7)
Vp—1, Wp—1 et (p—De
vp t /P wp pE€1.

The top and bottom weights have multiplicity 1, the other weights have multiplicity 2.
Observe that we use the same notation for the vectors ndV,.

From the above weight structure one can determine the decomposition of this finite
dimensionak(2) module with respect to the even subalgefii@) C ¢(2):

Vo= (.0 (p-11 (p>D. 8

So V), splits into two irreducibleg/(2) modules, both of which have been labelled by their
highest weights (in thé&eo, €1)-basis). In other words, the two components of #i&)
representations have dimensigns 1 andp — 1; often thisg/(2) representation would be
denoted byp(2) @ P(z—1),
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The actions of the remaining2) basis elements on the representation spgaen easily
be determined:

egovk = (p— kv egowk = (p — kwi
e?lvk = kv e(ljlwk = kwy )
egovk = /puk — kwi egowk = vk — /pWr
e%lvk = kwy e%lwk = V.
On the representation spakg, a positive-definite metric can be introduced by requiring
(volvo) = 1 (b V') = (vb™0') (ffol'y = (| f V) Yv,v' € V,.  (10)
Then

o kp!
(vk[vr) = b T
k—D!p!
(we|wy) :5kl((p%k)1: (11)
(o)) = k! p!
R PR STV

Because of the last relation, the basis (7) is not orthogonal with respect to this metric, so
it will be convenient to introduce another (and more convenient) orthogonal bagis af
follows:

M:L;k)! wo o k=01...p-1 (12)
1

Apzz—p!(vp+ P wp) (13)
—[—-1)!

X 2(11177|)(Ul_\/]_7w1) (l=12,....,p—-1). (14)

The action of the creation and annihilation operators on this basis reads (in the following
equationsk =0,1,..., pand/=1,2,..., p—1)

b A =kAr_1

b™xi=0U-Dxi-1

b*Ar = (p —k)Ag+1

b'xi=p—1-Dxn (15)

F7 Ak = (kAg-1+k(k — Dxx-1)//P

fTu=—W-1+ 1= Dy-1/Vp

STAk=((p =) A1 — (p — k) (p —k — Dyxas1)/ /P

fx= = (p—1—Dxs1)/V/p-
Note that in all the computations, one has to work in the quotient mddute V,,/ M, where
M, is generated by the primitive vectop, — ./pw, of V,. This often requires a separate
calculation for the casds=p ork = p — 1. For example,
1

1
b+Ap_1 = —!Up = F

1 1
(Up —5Wp— \/Ewp)> = Z_p!(vp +tJpwp) = Ap.
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The actions of the remaining2) elements on this basis are given by
egoAk =(p—k)Ax
egoxt = (p =D
Q1AL =k Ay
‘{1)(1 =1y (16)
egolk = ((p = ) Ak +k(p = k) xi) /P
egoxt = (A1 = (p = Dx0)//p
el1hk = (kAx — k(p — k) x)/v/p

et = — (A +1x)/Jp
where againk = 0,1,...,pandl = 1,2,..., p — 1. Observe that the subalgely&2)
with basisib*,b‘,ego, egl} acts irreducibly on the vectora; (k = 0,1,...,p) and

x (=12 ...,p—1); sofrom here the decomposition &f, into two irreduciblegi(2)
irreps is obvious.

3. A relation with so(4) representations

Consider the Lie algebran(4) = s1(2) & si(2) with generators/; andK; (i = 0, +) and
commutation relations

[Jo, J+] = £J+ [J+, J-]1 =200

[Ko, K] = K+ [K+, K_] = Ko (17)

[/i,K;]=0.
Rather than dealing with the abstract generators@f), we shall consider these generators
in a particular representation. The operathr§ = 0, &) are realized in the representation
D(%—l) of s/(2) (with p a positive integer), and the operatdfs(i = 0, &) are realized in the

representatio®?) of si(2). We shall continue to denote the representatives of the abstract
operators (17) by the same namé&sandkK;. Thus the operator; satisfy

(K+)*=0  Kf=3%I  {K+,K}=1  {Ko.K:+}=0  (18)

wherel is the identity operator.

The Lie algebrao(4) = s1(2) @ sl(2) has the subalgebs#2) with generatord; +K; (i
— 0, 4). Since in the present realization the tensor prod¥ée”) ® D(3) decomposes as
D2 @ D(2~D, the representation ab(4) considered here decomposes¥g’ @ Dz~ D
with respect to thiss/(2) subalgebra. This implies that the(4) representation space is
isomorphic to the spackg,, with the samei(2) action. Denoting the representatives;)
in V, again byb®, £, ¢% (0 =0, 1,i = 0, 1), the following identification holds:

b~ =Ji+Ke b =J_+K_  eQy—ed = 2Jo+2Ko
fT=VpKke  fr=ypKk-  efp— el =2/PKo (19)
= = T 2 1
0 0 1 1
egoteir = pl eqnt+e =—<2]oKo+J+K_+J_K++—>.
00 11 00 11 \/ﬁ 2
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These relations can be verified by considering the representationsso{#)@enerators in a
p=1

standard basis (2%, 2) 279 @ D(3), and comparing with (15)—(16). Indeed, let the

standard basis df)(”2 , 2) be given by

~1 1
Tmelze)

2 2
wherem = —pT_l, —”T_l +1,..., ”T_l andu = i%, then the standard action of the(4)
basis elements reads
I 1 ®1
0 2 2 =" 2 2
1/2
p 1
- — +1
fiszH(z n) (557 1))
(et maso]
- 1 p—1 1 (20)
fo [P n)e ) = £ o o
ke |22 ) |2 )= ((5 L))
N >k =z Fu) (50
p— 1
e =
5 ,m>®‘2,u >

Using the following relation between thid;, x;)-basis and the present one,
(p—k)'k' p—k p—1p-1 11
Ay = —k g
k \/ 2 2 ®12'2
p— 1 p+1 1 1
—k)®|. —=
\[‘ >®‘2 2
(p—l—)'(l—l)' p—1p-1 l®11
X= 2 2 2’2
—1 -1 p+1 1 1
-2 P ,p -1)® |z, —3
p 2 2 2° 2

it is straightforward to verify that (19) holds, using the actions (15)—(16) and (20).
Observe thato(4) has two Casimir operators; and Cy, which are independent in
general:

C1=JE+KE+3{Js, J_}+ {Ks, K} (21)
Co=JE — K§+3{Js, J_} — 3{K+, K_}. (22)

In the present representation, however, these operators are not independent. They can be
rewritten in terms of the;(2) operators, in which cas€; and C2 coincide apart from a
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multiple of the operatoego + e(fl (with eigenvalug in the representation). The Casim{s
andC» have the value 22 — 1 and 22 — 4, respectively.

4. Two realizations of ¢(2) and its representation V),

In order to find applications of the algebrd2) and its representationg,, it will be
useful to construct certain differential realizationsg¢2). Here we shall give two different
differential realizations. The main difference comes from the distinction between the spaces
of polynomials that the(2) elements act upon.

A simple realization ofg(2) is found by realizing the basis elements, x; as
follows:

xk 0
Ay = 0 k=01,...,p X = -1 [1=1,2,....,p—1 (23)

Thus the basis elements d&x 1)-arrays of polynomials in a variabke The representation
space can then be identified with

P(p) )
24
(P(p ~2) (24)
whereP(m) stands for the space of polynomialsirof degree at most, thusP(m) has a
basis{1, x, ..., x™}. The Lie superalgebr@(2) will have a realization preserving the space

(24).
With this realization of the basis vectons, and x;, a differential realization fog(2) is
easily derived from (15)—(16). There comes

b‘:% b+=—x2%+(p—1)x+xa3
00 eglz—zxa‘*l’_lﬂm oted=p
- 1 d +d2 )
=—\|—03—0+t+—0_
p \dx 3T 2
1 1 1
f+=—(—x2£+(p—1)x>03+—x+—x20+
P dx NN (25)
1 [, d
- — — +2(1— — + -1 )o_
ﬁ<x g2 T2l px ot rip ))6
T T 1 d 1 2
1 1
epp— €11 = — —2x—+p—1>0'3+—+—xo'
00 11 ﬁ( dx \/ﬁ \/ﬁ +

2 d? d
+——x—+(p—-1)—)o_
ﬁ( xdxz (P )dx>6
ego* ety = /Po3.
Herein,o+ andos are the common notations for the Pauli matrices. We shall refer to (25) as
the first differential realization af(2).
A second useful realization @f2) will be found by considering a different basis fid.
Let,fork=0,1,...,p—1,
ik =Np_j —kxp—tk (26)
Mptk = Npp—1+(p —k — 1)Xp—k—1- (27)
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Then the action of the(2) operators on this new basis reads

b¥ ik = kpk—1 b prk = Mk + ki pri—1
ffue=0 I iprk = /Pl
bk = (p —k — Dprs1 + ppti b pupsk = (p —k — Dpprrsa
7k = pup+i Jf up =0
(680 + 6(1)1> Hie = Pk (680 + 6(1)1> Wp+k = PHp+k 28)
@&—ﬁﬂuwﬂ%—pMk &&—ﬁﬁuwwd%+2—mWw
T T 1 1
1 1
egoteir) ik = —=(p — 2k) g + —=(2k) j p+i—1
( 00 11) \/ﬁ \/ﬁ p+
@I+ei)u ! (2k +2 — p)pp+k + 2(p k—Du
= —= - ++t —(p =k = Dp+1
00 11 P \/ﬁ P \/ﬁ
(fo—eli)m=—vpue (o ela) mpme = 1yt

Just as the basisy, x; could be represented l§2 x 1)-arrays of polynomials in a variable,
the same holds for the present basis. Let us consider

xk 0

,uk=<o) Mp+k=<xk> k=0,1,...,p—1 (29)

When expressed in this basis, the Lie superalgebra will have a realization preserving the space
P(p— 1))
. 30

<7’(p -1 (30)

Following from the action given in (28), this realization reads
d
b =—x2~ +(p—Dx+o_ ="+
X o (p )Jx +o o o+

680—8(1)122"&‘*1—1’_03 ot et =p

_ + 1 1 (31)
[~ =po- 7 =/po+ €go — €11 = —+/P03

o +ely = % (—Zx%(m +1+(p—1og+ 2%0_ +2(p — Dyxos — ZxZ%m)

and will be referred to as the second differential realizatiog(25.

5. Sphaleron model

In this section, we discuss a (physical) system of two coupled equations. In particular, this
system will have algebraic solutions in the representation spaces (24) and (30). Such a system
arises in the study of the stability of sphalerons [19] (i.e. unstable classical solutions) in the
Abelian gauge—Higgs model in 1 + 1 dimensions. The relevant equations read [20]

2
(% +A— Ozkzsnz) f(y) =20k cn dn g(y) =0 (32)
y
d2
(ﬁ +A+1+k%— (0% + 2)k2sn2> g(y) =20k cndn f(y)=0 (33)
y

and are considered on the Hilbert space of periodic functions ovdik[(%)] (K(k) is the
complete elliptic integral of the second type). The three elliptic functionss2t sn(y, k),
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cn = cn(y, k) anddn = dn(y, k) are periodic with respective periodk), 4K(k) and (k).

The spectral parameteris the mode eigenvalue of the system whilstands for the mass

ratio 2My / My, My andMyy being respectively the masses of the Higgs and gauge bosons.
Introducing the following new function

drf(y)

W) = araie Ok sn g(y) (34)
as well as of the change of variables

x = sn?(y, k) (35)
the system (32)—(33) becomes
<4x(1 —01- kzx)%zz +2(1—2(1 +k)x + 3k2x2)% +A— k292x> Wx)=0  (36)

2
<4x(1 k203 a1z 4 k292x> £
dx? dx

1—x)(1—k?
_ \/MW@), @)
X
It has been proved [20] that this system has algebraic solutionsjrda#®nsional space if
02 =2p@2p+1) or 6%>=2p2p-—1). (38)

This result suggests a connection between this sphaleron model ap@Ytrepresentations
we are dealing with. More precisely,df = 2p(2p + 1), we can put either

W(x) = Pp—1(x) +xQp_1(x) f@) =vx@1-x1- k2x) Pp—1(x) (39)
whereP,, (x) and Q,, (x) stand for polynomials of degreein x, or else
W(x) = V(1= x)(1—k2x)Pp_1(x) F(x) = Vx(Pp1(x) +xQp-1(x)). (40)

Under one of these two substitutions, the system of equations (40)-(41) has polynomial
solutions for P,_1(x) and Q,_1(x). Indeed, in the case (39), the system of equations
becomes

2
<4x(1 —x)(1- kzx)d— +2(1— 4L +k%)x + 7k2x2)g + A
dx? dx
PP 2p 6>x) Ppot(x) = —20,1(x) (41)
2 d2 2 2.2 d 2
Ax(1— x)(1 — k%x)— + 2(5 — 6(1 +k2)x + Tk’xD)— + ) — 4L +k?)
dx? dx

— K2(4p* +2p — 6>x) Qp-1(x)
= <(8k2x —401 +k2))% - 6k2) Pp_1(x). (42)

The differential operators of (41)—-(42) map any eIerrérﬁ’7 _1(();))) of the space (30) into
p—1

an element of the same space. Thus (41)—(42) reduces to an algebraic eigenvalue system for
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The differential operator can be written as
2 2 2
17— AP d 5+ 4k2x3d— +(6— 10(1 +k%)x + 14k%x 2)

+(—4+21 +k2)x)d—63 +(—4p? — 2p + 6)k%x — 2(L+k?)
X

A@g +A = 4x —

d
+2(1 +k?)o3 + 20+ — 6k%0_ + (41 +k?) — 8k2x)d—a_ + . (43)
X

Since this operator leaves the space of polynomials (30) invariant, we might expect that it can
be expressed in terms of tlg€2)-generators realized as in the so-called second realization
(i.e. asin (31)). We actually have

—_ —_ 2 — — —_ _
Apy tA = 2<€80 - 681) b* — 77 (ego - 681) A 2k2<€80 - 681) b
A2 1 TN, - 2 (8 _ 0y 2 I
+ ﬁ(eoo - 611) b —(1+k%) (eoo - 611) + ﬁb (eoo 611)

6 /1 1 1 ;5 s\y/7 =
- ;f (630 - 6%1) +(1 +k2)ﬁ (etl)o - e%l) (ego - e?l)

2% 5 o\ .- 2%/ 1 TN . 1,
= (o ehe) 1+ = (o—ehy) 1 raa i by
—4(1 +k2)1f+f— — 2k’ — p)if— +2(p+2)b*

p NI

1 - -
—2p—1D)—f* —6k’pb™ — (L +k>(2p +1) (€3, — 9
\/— ( 00 11)

+ A4k P (o - ely) — p(p+ DA+ + 1. (44)
The same result holds for the case (44) where we obtain

Ao + 1= 2<€go - 6?1) b* - % (ego - e?l) A 2k2(eg0 - 6?1) b~
+ i—;(%o - 6%1) b™ — (L+k?) (ego - egl)z + %b (eoo 6%1)

- Sf+(ego - 9%1) +@1 +k2)% (ego - e%l) (ego - e?l)

2% 5 5 2k [ 1 1 o 1y
——ego—e T+ — —e THAL+EH—b
\/ﬁ( 00 11)f » (oo 11>f N f

AT AR SV I R D NIy
—Bk%pb™ — (L+k)2p + 1) (edo — €dy)
1 —
LD+ D (ebo = ehy) = pp + DA+ (45)

In the case that? = 2p(2p — 1), we can consider either
W(x) = Vx0p-1(x) f(x) =V (@ =x)1—k2x)Pp_1(x) (46)

or else

W(x) = Vx(@—x)(1 - k2x) 0 p2(x) f(x) = Pp(x). (47)
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With the substitution (46), the space preserved by the differential operator is still (30). Acting
P[J—l(x)
Qp—l(x)
equation; using the second realization (31) one is again able to express the differential operator
subtended by this physical model in terms of §i(2)-generators. Explicitly this reads:

on an array of polynomial ) the equation reduces to an algebraic eigenvalue

Aue + A = 2<eg0 - 9(131) b* - % (ego - e?l) - 2k2(eg0 - 9(131) b~

+ ik—; (ego - e%)f_ + ?/kﬁ(eéo - 611) b~ — 2112 (eoo e%l) /-
— (L+k?) (eoo - 6(1)1>2 + %lfr(eoo - e::l) - —f (eoo - e%l)
+(1 +k2)% (ego - 6%1) (ego - egl) +2pb* + ﬁ(?: -pft
—2k2(3p — 2)b™ + 23(3p — 2)%]0— +(L+k3)(=2p+1) (ego - e‘fl)

1 —
—<1+k2>(1—p>7ﬁ(eéo eh) = p(p — DA +KD) +5. (48)

The context for the substitution (47) is slightly different, so it deserves more attention.
This time, the differential operator coming from the system (36)—(37) acts on an element

P . . . .

(Q ”(x(l)) from the space (24). Since also this space is a representation spagg)for
p—2

as we have proved in the previous section, we can again expect that the differential operator

can be written in terms of thg(2)-generators. This is indeed the case when using the first
differential realization of;(2) as given in (25). There comes

1 —_ —_
Ay + ) = 2k°b" (eoo - 611) K2 f* (eoo + 6%1) ﬁb_ (e%o + 6%1)
— — 1 — —
- 2<€80 - 681) b+ 7k2b+<etl)o + 6%1) +4(1+k%)b* b~

+f° (eoo + 9%1) +S(1+k?) (eoo - eh) (ego + e%l)

- ﬁ(l +k?) (eoo - 981) (e(%o+ 911) +@2p - Db +k2/pf*

+k2(—6p + )bt — /pf~ + (L +k?) (217 + %) (ego - 6(131)

— — 1 — —
— VP +k?) (ecl)o+ e%l) - 5«/5(1 k%) (efl)o - eh)
+(—2p%+ p)(L+k%) + 1. (49)

We have thus written each of the differential operatargg), A, As and Ay
associated with the sphaleron model in terms of¢{® generators. The Lie superalgebra
¢(2) acts as a ‘spectrum generating superalgebra’ for this physical model. More precisely both
the sets of linear differential operators playing a role in the sphaleron model, those preserving
the vector space of 2-arrays of polynomials of deggeesl andp — 1 on the one hand and
those preserving the vector space of 2-arrays of polynomials of deg@aspy — 2 on the
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other hand, correspond to realizationg(#) and make the determinationopossible. Such

a determination is relatively straightforward due to the fact that the (linear) Lie superalgebra
¢(2) has a particularly simple structure, much simpler than the algebras used in previous
papers [20, 22] devoted to the calculationjof Indeed in these papers, the algekwéd)

(for A@zg), Ao and A4e) as well as an associative (non-linear) graded algebra denoted
by A(2) (for A7) have been used for such a task and this required heavy techniques in
connection with the study [22] of the irreps of thig2). Such a simplification obtained by
consideringg(2) instead ofA(2) leads to the hope of a more direct diagonalization of the
operators connected with(n) [22] by usingg(n).

6. Moszkowski model

We now turn to the Moszkowski model [23]. This is a two-level model, each of the levels
being N-fold degenerate witlV, particles of type: andN, particles of typeb. The state of
each particle is specified by the quantum numbees £3 (taking the value} in the upper
level and—% in the lower level) and which refers to the particular degenerate state within a
given level. The corresponding Hamiltonian associated to the model reads [23]

Hy = ¢ (Joa) — Jo(b) + V{J+, J_} (50)

wherec is the energy difference between the two levels Eraknotes the interaction strength.
In (50), the operatordy(a), J+(a) are defined according to

1 + - + -
Jo(a) = > Xq: <aq’%aq’% —aq’_%aq’_%) (52)
J — + - 52
+(a) Xq:aq’%aq’_% (52)
— + -
J_(a) = Zaq’_%aq’% (53)

WheI’Ea; i1 (aq_:tl) denotes the creation (annihilation) operator of a particle of tyjpethe
=2 =2

stateg with o = i%. Similar definitions hold fovy(b), J+ (b) and we also have

Ji = Ji(a) + Ji(b) i =0+ (54)
The operatordp(i), J+ (i) (i = a, b) satisfy theso(4) = s1(2) @ s1(2) commutation relations

[Jo(@), J& ()] = £8i;J+() (55)

[J+(D), J-()] = 28ij Jo(i) (i,j=a,b). (56)

Because of this/(2) @& sl(2) symmetry of the Moszkowski Hamiltonian, we can also expect
the ¢(2) Lie superalgebra to play a role within this model. Associating the operdtors
andK; (i = 0,+) of (17) with the current operatotg(b) and J;(a) respectively, we can
rewrite Hy, as

Hy =c(Ko—Jo)+V({K+, K_} +{Js, J_} +2J:K_ + 2J_K3). (57)
According to (19), this can be rewritten as

Hy = c(% (eEO - 6%1) - %(ego - 6(1)1)>

(3~ Yo+ vi(ehorel)). e
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Although in principle the Hamiltonia#,, can be diagonalized using the expression (57) in
terms ofso(4)-generators, it turns out to be much simpler using the expression (58) in terms
of ¢(2)-generators together with the second differential realization (332t Then the
Hamiltonian becomes

d 1 1 d? d
Hy=cl-—x—+Z(p—1) —Zo3 ) +V|—-2x>—= +(2p — Hhx—
2 2 dx

dx dx?
d 5 d

+p+2—o_+2(p— Dxor —2x“—o4 | . (59)
dx dx

Considering the action of this on the representation space (34), or equivalently, the action (28)
of (58) on the basis vectors (26)—(27), leads to an eigenvalue system that is almost trivial to
solve, i.e.

Eg=pV—(1-5)c

Ef:—QVHk—p%Hﬂ%—k%tJV%ﬂ+@—2@—2@Vc(k:LZV“,p—D
E;=pV+(1—%)c.

Thus we have recovered the well known diagonalization of the Moszkowski Hamiltonian but
by using one of the differential realizations of the Lie superalggf2a The latter can then
be considered as a ‘spectrum generating superalgebra’ of the Moszkowski model.

7. Jaynes—Cummings model

The well known Jaynes—Cummings Hamiltonian [24] is one of the diagonalizable
Hamiltonians of quantum optics. It describes a two-level atom interacting with a single-mode
radiation. Under the so-called rotating wave approximation for which only real transitions
(e.g. a photon is absorbed while the electron jumps from level 1 to level 2) are taken into
account, the Jaynes—Cummings Hamiltonian is

Hijc= a)(a+a_ + %) — Looos + gla o_+a'oy). (60)

Herew is the field mode frequencyy the atomic frequency whilgis a real coupling constant
and, as usuak~ anda* denote the photon annihilation and creation operators, respectively.

In order to determine the spectrum Bfc, one can use the irreducible representations
of the Lie superalgebra(l, 1) as shown in [25]. We will prove in this section that
the Lie superalgebra(2) can play a similar role and thus be considered as a ‘spectrum
generating superalgebra’ for the Jaynes—Cummings Hamiltonian. For this purpose, we shall
use the basis vectors (12)—(14) consisting of the statesk = 0,1,...,p) andy; (I =

1,2,..., p—1). Thistime, however, we shall consider the following realization of these basis
vectors:
pxP=k
k <(p _ k)xp_k_1> (k 05 s ’ p)
0 (61)
x;:(xp_,_l> l=12....,p—-1

as opposed to (23). This new realization of the basis states leads to a third differential
realization of they(2)-generators given by
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d d
b_=—x2—+(p—1)x+x63+o_ bt =—

dx dx
— — d — —
680—68122’Ca+1—17—03 eQoted =rp

62
[T =Jplxoz+to_ — x26+) fr= Do+ (62)

1 I 1 2 d
eg)-() - e%l = /p(—03+ 2x04) 66'04' e]:l:l = ﬁ <§U3 + ad_> .

It has to be noticed that the realization of #(@) subalgebra generatedby, b* andego — e§1
as defined in (62) coincides with the one performed in [26], but with other arguments. Taking
in the Hamiltonian (60) the realization

d
a+ =X a = — (63)
dx
we can expresH;jcas
oy o). 1 g 1.1
Hic= 7 (eoo - 911) topot Ex/ﬁ (eoo + ell)
lg /71 1 1
+ 2 /5 (eéo - 6%1) + 5(0)0 —w+g(p—1)os. (64)

From this equation it is clear that th€2) superalgebrais a ‘spectrum generating superalgebra’
of the Jaynes—Cummings Hamiltonigivided the detuningh (= o — wp) satisfies

A=g(p—-1. (65)

Suppose this is the case. Then the action of (64) on the basis elemgatyl x; follows

from (15) and (16). In factAo and A, are directly eigenvectors @f;c (with the eigenvalues

Ej and E; respectively), whereas the other eigenvectors are simple linear combinations of
Arandyi(k=1,2,..., p—1). Thusitis straightforward to recover the Jaynes—Cummings
spectrum, i.e.

E§=wp+3(p+Dg

Ef —w(p-ktg/ip?+ipri-k  k=12...p-1
Ey=3(p—1yg
where the positive integeris arbitrary.
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