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Abstract
The Lie superalgebraq(2) and its class of irreducible representationsVp of
dimension 2p ( p being a positive integer) are considered. The action of theq(2)
generators on a basis ofVp is given explicitly, and from here two realizations of
q(2) are determined. Theq(2) generators are realized as differential operators
in one variablex, and the basis vectors ofVp as 2-arrays of polynomials in
x. Following such realizations, it is observed that the Hamiltonian of certain
physical models can be written in terms of theq(2) generators. In particular,
the models given here as an example are the sphaleron model, the Moszkowski
model and the Jaynes–Cummings model. For each of these, it is shown how
theq(2) realization of the Hamiltonian is helpful in determining the spectrum.

PACS numbers: 02.20.−v, 11.30.Pb, 42.50.−p

1. Introduction

Since their introduction in supersymmetry [1–3], Lie superalgebras and their irreducible
representations (simple modules) have been the subject of much attention in both
mathematical [4–6] and physics literature, where both finite [7–9] and infinite dimensional
representations [10–14] have been studied. When Kac obtained his classification [4] of simple
Lie superalgebras, he subdivided them into the classical Lie superalgebras and the Lie
superalgebras of Cartan type. The classical Lie superalgebras consist of the basic Lie
superalgebras—A(m, n), B(m, n), C(n), D(m, n) and the exceptional onesD(2, 1;α), G(3) and
F(4)—and the strange seriesP(n) andQ(n). The basic Lie superalgebras have made their
appearance in various physical models. As far as we know, the strange Lie superalgebras have
not been used in relation to any physical model or example. In this paper, we shall discuss the
strange Lie superalgebraQ(1) of rank 1; more precisely, we shall be dealing with its central
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extension which is usually denoted byq(2) [15]. It will be shown thatq(2) has a class of
interesting representationsVp labelled by a positive integerp. These representations allow for
certain realizations ofq(2), and it will be shown that these realizations, in turn, are appropriate
for the study of certain physical models: the so-called sphaleron model, the Moszkowski
model, and the Jaynes–Cummings model.

The strange Lie superalgebrasq(n) can be considered as a super-analogue ofgl(n).
Representations ofq(n) have been studied from the mathematical point of view. In [15–17],
the finite dimensional irreduciblegraded representations ofq(n) have been determined together
with their characters, both in the so-called typical and atypical cases. These representations
possess the strange property that the multiplicity of the highest weight is in general greater
than 1 [16]. More recently, a new class of finite dimensional irreducible representations ofq(n)
was determined [18]. These representations arenot graded and thus they are not among the
ones classified by Penkov and Serganova [16]. However, they possess many other interesting
properties: the highest weight has multiplicity 1, they can be equipped with an inner product,
and in an apropriate context they can be considered as Fock spaces.

In the present paper we shall concentrate on these representations for the Lie superalgebra
q(2). The representationsVp are of dimension 2p ( p is a positive integer). When decomposed
to the even subalgebragl(2) of q(2), Vp consists of the direct sum of twogl(2) irreps: one
of dimensionp + 1 and the other of dimensionp − 1. Having twogl(2) irreps of such
dimensions as part of an irreducible representation of another algebra (namelyq(2)), will help
in determining physical applications for the representationsVp.

The structure of this paper is as follows. In section 2, the algebraq(2) and its class
of representationsVp are defined. In section 3, we shall discuss a relation between these
representations and certain representations ofso(4). Two realizations ofq(2) and of the
corresponding representationsVp will be stated in section 4. The appearance and usefullness
of these realizations in physical models will then be illustrated in the following sections: the
sphaleron model in section 5, the Moszkowski model in section 6 and the Jaynes–Cummings
model in section 7.

2. The Lie superalgebra q(2) and the representations Vp

For the definition ofq(n) and a corresponding class of representations, we refer to [18]. Here
we shall deal only with the casen = 2. The Lie superalgebraq(2) has a basis consisting of four
even elementse0̄

ij (i, j = 0,1) and four odd elementse1̄
ij (i, j = 0,1), satisfying the bracket

relation

[[eσij , e
θ
kl ]] = δjke

σ+θ
il − (−1)σθδileσ+θ

kj (1)

whereσ, θ ∈ Z2 = {0̄, 1̄}, andi, j, k, l ∈ {0,1}. Here, [[, ]] stands for the Lie superalgebra
bracket, which could be a commutator or an anti-commutator, depending on the grading of
the elements considered. We write explicitly [, ] (resp. { , }) if this stands for a commutator
(resp. anti-commutator).

It is clear that the even part ofq(2) (i.e. the four elements with upper index equal to0̄)
is the Lie algebragl(2). For convenience, a different notation will be introduced for the root
vectors, i.e. the elementseσij with i �= j , since these elements can be interpreted as ‘creation
and annihilation operators’ forq(2) [18]. So we put:

b+ = e0̄
10 b− = e0̄

01 (2)

f + = e1̄
10 f− = e1̄

01. (3)
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These operators satisfy certain triple relations (see [18, equations (8)–(11)]), and together with
their supercommutators they form a basis ofq(2).

The algebraq(2) has finite dimensional representations labelled by a positive integer
p. The representation spaceVp arises as a quotient moduleVp = V̄p/Mp of an infinite
dimensionalq(2) moduleV̄p by its maximal submoduleMp [18]. The spacēVp is spanned
by the vectors

vk = (b+)kv0 k = 0,1, . . .
(4)

wk = (b+)k−1f +v0 k = 1,2, . . .

wherev0 is a vacuum (or highest weight vector) satisfying:

e0̄
00v0 = pv0 e1̄

00v0 = √
pv0

e0̄
11v0 = 0 e1̄

11v0 = 0 (5)

b−v0 = f−v0 = 0.

The following actions inV̄p of the creation and annihilation operators onvk andwk can be
computed:

b+vk = vk+1 b+wk = wk+1

f +vk = wk+1 f +wk = 0

b−vk = k(p − k + 1)vk−1
(6)

f−vk = k
√
p vk−1 − k(k − 1)wk−1

b−wk = √
p vk−1 + (k − 1)(p − k)wk−1

f−wk = pvk−1 − (k − 1)
√
p wk−1.

In V̄p, vp − √
p wp is a primitive vector (the actions ofb− andf− on it are zero) generating

the submoduleMp. The quotient moduleVp = V̄p/Mp is therefore a finite dimensional
module. A set of basis vectors ofVp, together with the corresponding weight in the natural
basis(ε0, ε1) of thegl(2) weight space, is given by

v0 pε0

v1, w1 (p − 1)ε0 + ε1

v2, w2 (p − 2)ε0 + 2ε1
...

...

vp−1, wp−1 ε0 + (p − 1)ε1

vp +
√
p wp pε1.

(7)

The top and bottom weights have multiplicity 1, the other weights have multiplicity 2.
Observe that we use the same notation for the vectors inVp andV̄p.

From the above weight structure one can determine the decomposition of this finite
dimensionalq(2) module with respect to the even subalgebragl(2) ⊂ q(2):

Vp → (p,0) ⊕ (p − 1,1) (p > 1). (8)

SoVp splits into two irreduciblegl(2) modules, both of which have been labelled by their
highest weights (in the(ε0, ε1)-basis). In other words, the two components of thegl(2)
representations have dimensionsp + 1 andp − 1; often thisgl(2) representation would be
denoted byD(

p
2 ) ⊕ D(

p
2 −1).
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The actions of the remainingq(2) basis elements on the representation spaceVp can easily
be determined:

e0̄
00vk = (p − k)vk e0̄

00wk = (p − k)wk

e0̄
11vk = kvk e0̄

11wk = kwk
(9)

e1̄
00vk = √

pvk − kwk e1̄
00wk = vk − √

pwk

e1̄
11vk = kwk e1̄

11wk = vk.

On the representation spaceVp, a positive-definite metric can be introduced by requiring

〈v0|v0〉 = 1 〈b+v|v′〉 = 〈v|b−v′〉 〈f +v|v′〉 = 〈v|f−v′〉 ∀v, v′ ∈ Vp. (10)

Then

〈vk |vl〉 = δkl
k!p!

(p − k)!

〈wk|wl〉 = δkl
(k − 1)!p!

(p − k)!
(11)

〈vk |wl〉 = δkl
k!p!

(p − k)!
√
p
.

Because of the last relation, the basis (7) is not orthogonal with respect to this metric, so
it will be convenient to introduce another (and more convenient) orthogonal basis ofVp as
follows:

�k = (p − k)!

p!
vk (k = 0,1, . . . , p − 1) (12)

�p = 1

2p!
(vp +

√
pwp) (13)

χl = (p − l − 1)!

p!
(vl − √

pwl) (l = 1,2, . . . , p − 1). (14)

The action of the creation and annihilation operators on this basis reads (in the following
equations,k = 0,1, . . . , p andl = 1,2, . . . , p − 1)

b−�k = k�k−1

b−χl = (l − 1)χl−1

b+�k = (p − k)�k+1

b+χl = (p − l − 1)χl+1 (15)

f−�k = (k�k−1 + k(k − 1)χk−1)/
√
p

f−χl = −(�l−1 + (l − 1)χl−1)/
√
p

f +�k = ((p − k)�k+1 − (p − k)(p − k − 1)χk+1)/
√
p

f +χl = (�l+1 − (p − l − 1)χl+1)/
√
p.

Note that in all the computations, one has to work in the quotient moduleVp = V̄p/Mp, where
Mp is generated by the primitive vectorvp − √

pwp of V̄p. This often requires a separate
calculation for the casesk = p or k = p − 1. For example,

b+�p−1 = 1

p!
vp = 1

p!

(
vp − 1

2
(vp − √

pwp)

)
= 1

2p!
(vp +

√
pwp) = �p.
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The actions of the remainingq(2) elements on this basis are given by

e0̄
00�k = (p − k)�k

e0̄
00χl = (p − l)χl

e0̄
11�k = k �k

e0̄
11χl = l χl (16)

e1̄
00�k = ((p − k)�k + k(p − k)χk)/

√
p

e1̄
00χl = (�l − (p − l)χl)/

√
p

e1̄
11�k = (k�k − k(p − k)χk)/

√
p

e1̄
11χl = − (�l + lχl)/

√
p

where againk = 0,1, . . . , p and l = 1,2, . . . , p − 1. Observe that the subalgebragl(2)

with basis
{
b+, b−, e0̄

00, e
0̄
11

}
acts irreducibly on the vectors�k (k = 0,1, . . . , p) and

χl (l = 1,2, . . . , p − 1); so from here the decomposition ofVp into two irreduciblegl(2)
irreps is obvious.

3. A relation with so(4) representations

Consider the Lie algebraso(4) ≡ sl(2) ⊕ sl(2) with generatorsJi andKi (i = 0,±) and
commutation relations

[J0, J±] = ±J± [J+, J−] = 2J0

[K0,K±] = ±K± [K+,K−] = K0 (17)

[Ji,Kj ] = 0.

Rather than dealing with the abstract generators ofso(4), we shall consider these generators
in a particular representation. The operatorsJi (i = 0,±) are realized in the representation

D(
p−1

2 ) of sl(2) (with p a positive integer), and the operatorsKi (i = 0,±) are realized in the

representationD( 1
2 ) of sl(2). We shall continue to denote the representatives of the abstract

operators (17) by the same names,Ji andKi. Thus the operatorsKi satisfy

(K±)2 = 0 K2
0 = 1

4I {K+,K−} = I {K0,K±} = 0 (18)

whereI is the identity operator.
The Lie algebraso(4) = sl(2) ⊕ sl(2) has the subalgebrasl(2) with generatorsJi +Ki (i

= 0, ±). Since in the present realization the tensor productD(
p−1

2 ) ⊗ D( 1
2 ) decomposes as

D(
p
2 ) ⊕ D(

p
2 −1), the representation ofso(4) considered here decomposes asD(

p
2 ) ⊕ D(

p
2 −1)

with respect to thissl(2) subalgebra. This implies that theso(4) representation space is
isomorphic to the spaceVp, with the samesl(2) action. Denoting the representatives ofq(2)
in Vp again byb±, f±, eσii (σ = 0̄, 1̄, i = 0,1), the following identification holds:

b− = J+ + K+ b+ = J− + K− e0̄
00 − e0̄

11 = 2J0 + 2K0

f− = √
pK+ f + = √

pK− e1̄
00 − e1̄

11 = 2
√
pK0 (19)

e0̄
00 + e0̄

11 = pI e1̄
00 + e1̄

11 = 2√
p

(
2J0K0 + J+K− + J−K+ +

1

2

)
.
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These relations can be verified by considering the representations of theso(4) generators in a

standard basis ofD(
p−1

2 , 1
2) = D(

p−1
2 ) ⊗D( 1

2), and comparing with (15)–(16). Indeed, let the

standard basis ofD(
p−1

2 , 1
2) be given by

∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉

wherem = −p−1
2 ,−p−1

2 + 1, . . . , p−1
2 andµ = ±1

2, then the standard action of theso(4)
basis elements reads

J0

∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉
= m

∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉

J±
∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉
=
((

p − 1

2
∓ m

)(
p − 1

2
± m + 1

))1/2

×
∣∣∣∣p − 1

2
,m ± 1

〉
⊗
∣∣∣∣12, µ

〉
(20)

K0

∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉
= µ

∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉

K±
∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ

〉
=
((

1

2
∓ µ

)(
1

2
± µ + 1

))1/2

×
∣∣∣∣p − 1

2
,m

〉
⊗
∣∣∣∣12, µ ± 1

〉
.

Using the following relation between the(�k, χl)-basis and the present one,

�k =
√
(p − k)!k!

p!

(√
p − k

p

∣∣∣∣p − 1

2
,
p − 1

2
− k

〉
⊗
∣∣∣∣12, 1

2

〉

+

√
k

p

∣∣∣∣p − 1

2
,
p + 1

2
− k

〉
⊗
∣∣∣∣12,−1

2

〉)

χl =
√
(p − l − 1)!(l − 1)!

p!

(√
l

p

∣∣∣∣p − 1

2
,
p − 1

2
− l

〉
⊗
∣∣∣∣12, 1

2

〉

−
√
p − l

p

∣∣∣∣p − 1

2
,
p + 1

2
− l

〉
⊗
∣∣∣∣12,−1

2

〉)

it is straightforward to verify that (19) holds, using the actions (15)–(16) and (20).
Observe thatso(4) has two Casimir operatorsC1 and C2, which are independent in

general:

C1 = J 2
0 + K2

0 + 1
2{J+, J−} + 1

2{K+,K−} (21)

C2 = J 2
0 − K2

0 + 1
2{J+, J−} − 1

2{K+,K−}. (22)

In the present representation, however, these operators are not independent. They can be
rewritten in terms of theq(2) operators, in which caseC1 and C2 coincide apart from a



Realizations of Lie superalgebraq(2) 8125

multiple of the operatore0̄
00 + e0̄

11 (with eigenvaluep in the representation). The CasimirsC1

andC2 have the value 2p2 − 1 and 2p2 − 4, respectively.

4. Two realizations of q(2) and its representation Vp

In order to find applications of the algebraq(2) and its representationsVp, it will be
useful to construct certain differential realizations ofq(2). Here we shall give two different
differential realizations. The main difference comes from the distinction between the spaces
of polynomials that theq(2) elements act upon.

A simple realization ofq(2) is found by realizing the basis elements�k, χl as
follows:

�k =
(
xk

0

)
k = 0,1, . . . , p χl =

(
0

xl−1

)
l = 1,2, . . . , p − 1. (23)

Thus the basis elements are(2 × 1)-arrays of polynomials in a variablex. The representation
space can then be identified with( P(p)

P(p − 2)

)
(24)

whereP(m) stands for the space of polynomials inx of degree at mostm, thusP(m) has a
basis{1, x, . . . , xm}. The Lie superalgebraq(2) will have a realization preserving the space
(24).

With this realization of the basis vectors�k andχl , a differential realization forq(2) is
easily derived from (15)–(16). There comes

b− = d

dx
b+ = −x2 d

dx
+ (p − 1)x + xσ3

e0̄
00 − e0̄

11 = −2x
d

dx
+ p − 1 +σ3 e0̄

00 + e0̄
11 = p

f− = 1√
p

(
d

dx
σ3 − σ+ +

d2

dx2σ−
)

f + = 1√
p

(
−x2 d

dx
+ (p − 1)x

)
σ3 +

1√
p
x +

1√
p
x2σ+

(25)

− 1√
p

(
x2 d2

dx2 + 2(1 − p)x
d

dx
+ p(p − 1)

)
σ−

e1̄
00 − e1̄

11 = 1√
p

(
−2x

d

dx
+ p − 1

)
σ3 +

1√
p

+
2√
p
xσ+

+
2√
p

(
−x

d2

dx2
+ (p − 1)

d

dx

)
σ−

e1̄
00 + e1̄

11 = √
pσ3.

Herein,σ± andσ3 are the common notations for the Pauli matrices. We shall refer to (25) as
the first differential realization ofq(2).

A second useful realization ofq(2) will be found by considering a different basis forVp.
Let, for k = 0,1, . . . , p − 1,

µk = �p−k − kχp−k (26)

µp+k = �p−k−1 + (p − k − 1)χp−k−1. (27)
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Then the action of theq(2) operators on this new basis reads

b+µk = kµk−1 b+µp+k = µk + kµp+k−1

f +µk = 0 f +µp+k = √
pµk

b−µk = (p − k − 1)µk+1 + µp+k b−µp+k = (p − k − 1)µp+k+1

f−µk = √
pµp+k f−µp+k = 0(

e0̄
00 + e0̄

11

)
µk = pµk

(
e0̄

00 + e0̄
11

)
µp+k = pµp+k

(28)(
e0̄

00 − e0̄
11

)
µk = (2k − p)µk

(
e0̄

00 − e0̄
11

)
µp+k = (2k + 2− p)µp+k(

e1̄
00 + e1̄

11

)
µk = 1√

p
(p − 2k)µk +

1√
p
(2k)µp+k−1

(
e1̄

00 + e1̄
11

)
µp+k = 1√

p
(2k + 2− p)µp+k +

2√
p
(p − k − 1)µk+1(

e1̄
00 − e1̄

11

)
µk = −√

pµk

(
e1̄

00 − e1̄
11

)
µp+k = √

pµp+k.

Just as the basis�k, χl could be represented by(2 × 1)-arrays of polynomials in a variable,
the same holds for the present basis. Let us consider

µk =
(
xk

0

)
µp+k =

(
0
xk

)
k = 0,1, . . . , p − 1. (29)

When expressed in this basis, the Lie superalgebra will have a realization preserving the space(P(p − 1)
P(p − 1)

)
. (30)

Following from the action given in (28), this realization reads

b− = −x2 d

dx
+ (p − 1)x + σ− b+ = d

dx
+ σ+

e0̄
00 − e0̄

11 = 2x
d

dx
+ 1− p − σ3 e0̄

00 + e0̄
11 = p

(31)
f− = √

pσ− f + = √
pσ+ e1̄

00 − e1̄
11 = −√

pσ3

e1̄
00 + e1̄

11 = 1√
p

(
−2x

d

dx
σ3 + 1 + (p − 1)σ3 + 2

d

dx
σ− + 2(p − 1)xσ+ − 2x2 d

dx
σ+

)
and will be referred to as the second differential realization ofq(2).

5. Sphaleron model

In this section, we discuss a (physical) system of two coupled equations. In particular, this
system will have algebraic solutions in the representation spaces (24) and (30). Such a system
arises in the study of the stability of sphalerons [19] (i.e. unstable classical solutions) in the
Abelian gauge–Higgs model in 1 + 1 dimensions. The relevant equations read [20](

d2

dy2 + λ − θ2k2 sn2
)
f (y) − 2θk cn dn g(y) = 0 (32)

(
d2

dy2 + λ + 1 +k2 − (θ2 + 2)k2 sn2
)
g(y) − 2θk cn dn f (y) = 0 (33)

and are considered on the Hilbert space of periodic functions over [0,4K(k)] (K(k) is the
complete elliptic integral of the second type). The three elliptic functions [21]sn = sn(y, k),
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cn = cn(y, k) anddn = dn(y, k) are periodic with respective periods 4K(k), 4K(k) and 2K(k).
The spectral parameterλ is the mode eigenvalue of the system whileθ stands for the mass
ratio 2MH/MW, MH andMW being respectively the masses of the Higgs and gauge bosons.

Introducing the following new function

W(y) ≡ df (y)

dy
− θk sn g(y) (34)

as well as of the change of variables

x = sn2(y, k) (35)

the system (32)–(33) becomes(
4x(1− x)(1 − k2x)

d2

dx2 + 2(1 − 2(1 + k2)x + 3k2x2)
d

dx
+ λ − k2θ2x

)
W(x) = 0 (36)

(
4x(1 − x)(1 − k2x)

d2

dx2 + 2(−1 + k2x2)
d

dx
+ λ − k2θ2x

)
f (x)

= − 2

√
(1 − x)(1 − k2x)

x
W(x). (37)

It has been proved [20] that this system has algebraic solutions in a 2p-dimensional space if

θ2 = 2p(2p + 1) or θ2 = 2p(2p − 1). (38)

This result suggests a connection between this sphaleron model and theq(2)-representations
we are dealing with. More precisely, ifθ2 = 2p(2p + 1), we can put either

W(x) = Pp−1(x) + xQp−1(x) f (x) =
√
x(1 − x)(1 − k2x)Pp−1(x) (39)

wherePm(x) andQm(x) stand for polynomials of degreem in x, or else

W(x) =
√
(1 − x)(1 − k2x)Pp−1(x) f (x) = √

x(Pp−1(x) + xQp−1(x)). (40)

Under one of these two substitutions, the system of equations (40)–(41) has polynomial
solutions forPp−1(x) and Qp−1(x). Indeed, in the case (39), the system of equations
becomes(

4x(1− x)(1 − k2x)
d2

dx2 + 2(1 − 4(1 + k2)x + 7k2x2)
d

dx
+ λ

− k2(4p2 + 2p − 6)x

)
Pp−1(x) = −2Qp−1(x) (41)

(
4x(1− x)(1 − k2x)

d2

dx2 + 2(5 − 6(1 + k2)x + 7k2x2)
d

dx
+ λ − 4(1 + k2)

− k2(4p2 + 2p − 6)x

)
Qp−1(x)

=
(
(8k2x − 4(1 + k2))

d

dx
− 6k2

)
Pp−1(x). (42)

The differential operators of (41)–(42) map any element

(
Pp−1(x)

Qp−1(x)

)
of the space (30) into

an element of the same space. Thus (41)–(42) reduces to an algebraic eigenvalue system forλ.
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The differential operator can be written as

.(39) + λ = 4x
d2

dx2 − 4(1 + k2)x2 d2

dx2 + 4k2x3 d2

dx2 + (6 − 10(1 + k2)x + 14k2x2)
d

dx

+ (−4 + 2(1 + k2)x)
d

dx
σ3 + (−4p2 − 2p + 6)k2x − 2(1 + k2)

+ 2(1 + k2)σ3 + 2σ+ − 6k2σ− + (4(1 + k2) − 8k2x)
d

dx
σ− + λ. (43)

Since this operator leaves the space of polynomials (30) invariant, we might expect that it can
be expressed in terms of theq(2)-generators realized as in the so-called second realization
(i.e. as in (31)). We actually have

.(39) + λ = 2
(
e0̄

00 − e0̄
11

)
b+ − 2√

p

(
e0̄

00 − e0̄
11

)
f + − 2k2

(
e0̄

00 − e0̄
11

)
b−

+
2k2

√
p

(
e1̄

00 − e1̄
11

)
b− − (1 + k2)

(
e0̄

00 − e0̄
11

)2
+

2√
p
b+
(
e1̄

00 − e1̄
11

)

− 6

p
f +
(
e1̄

00 − e1̄
11

)
+ (1 + k2)

1√
p

(
e1̄

00 − e1̄
11

) (
e0̄

00 − e0̄
11

)

− 2k2

√
p

(
e0̄

00 − e0̄
11

)
f− +

2k2

p

(
e1̄

00 − e1̄
11

)
f− + 4(1 + k2)

1√
p
b+f−

− 4(1 + k2)
1

p
f +f− − 2k2(1 − p)

1√
p
f− + 2(p + 2)b+

− 2(p − 1)
1√
p
f + − 6k2pb− − (1 + k2)(2p + 1)

(
e0̄

00 − e0̄
11

)
+ (1 + k2)

√
p
(
e1̄

00 − e1̄
11

)
− p(p + 1)(1 + k2) + λ. (44)

The same result holds for the case (44) where we obtain

.(40) + λ = 2
(
e0̄

00 − e0̄
11

)
b+ − 2√

p

(
e0̄

00 − e0̄
11

)
f + − 2k2

(
e0̄

00 − e0̄
11

)
b−

+
2k2

√
p

(
e1̄

00 − e1̄
11

)
b− − (1 + k2)

(
e0̄

00 − e0̄
11

)2
+

2√
p
b+
(
e1̄

00 − e1̄
11

)

− 6

p
f +
(
e1̄

00 − e1̄
11

)
+ (1 + k2)

1√
p

(
e1̄

00 − e1̄
11

) (
e0̄

00 − e0̄
11

)

− 2k2

√
p

(
e0̄

00 − e0̄
11

)
f− +

2k2

p

(
e1̄

00 − e1̄
11

)
f− + 4(1 + k2)

1√
p
b+f−

− 4(1 + k2)
1

p
f +f− + 2k2√pf− + 2(p + 2)b+ − 2

√
pf +

− 6k2pb− − (1 + k2)(2p + 1)
(
e0̄

00 − e0̄
11

)
+ (1 + k2)

1√
p
(p + 1)

(
e1̄

00 − e1̄
11

)
− p(p + 1)(1 + k2) + λ. (45)

In the case thatθ2 = 2p(2p − 1), we can consider either

W(x) = √
xQp−1(x) f (x) =

√
(1 − x)(1 − k2x)Pp−1(x) (46)

or else

W(x) =
√
x(1 − x)(1 − k2x)Qp−2(x) f (x) = Pp(x). (47)
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With the substitution (46), the space preserved by the differential operator is still (30). Acting

on an array of polynomials

(
Pp−1(x)

Qp−1(x)

)
, the equation reduces to an algebraic eigenvalue

equation; using the second realization (31) one is again able to express the differential operator
subtended by this physical model in terms of theq(2)-generators. Explicitly this reads:

.(46) + λ = 2
(
e0̄

00 − e0̄
11

)
b+ − 2√

p

(
e0̄

00 − e0̄
11

)
f + − 2k2

(
e0̄

00 − e0̄
11

)
b−

+
2k2

√
p

(
e0̄

00 − e0̄
11

)
f− +

2k2

√
p

(
e1̄

00 − e1̄
11

)
b− − 2k2

p

(
e1̄

00 − e1̄
11

)
f−

− (1 + k2)
(
e0̄

00 − e0̄
11

)2
+

2√
p
b+
(
e1̄

00 − e1̄
11

)
− 6

p
f +
(
e1̄

00 − e1̄
11

)

+ (1 + k2)
1√
p

(
e1̄

00 − e1̄
11

) (
e0̄

00 − e0̄
11

)
+ 2pb+ +

2√
p
(3 − p)f +

− 2k2(3p − 2)b− + 2k2(3p − 2)
1√
p
f− + (1 + k2)(−2p + 1)

(
e0̄

00 − e0̄
11

)

− (1 + k2)(1 − p)
1√
p

(
e1̄

00 − e1̄
11

)
− p(p − 1)(1 + k2) + λ. (48)

The context for the substitution (47) is slightly different, so it deserves more attention.
This time, the differential operator coming from the system (36)–(37) acts on an element(

Pp(x)

Qp−2(x)

)
from the space (24). Since also this space is a representation space forq(2),

as we have proved in the previous section, we can again expect that the differential operator
can be written in terms of theq(2)-generators. This is indeed the case when using the first
differential realization ofq(2) as given in (25). There comes

.(47) + λ = 2k2b+
(
e0̄

00 − e0̄
11

)
− k2f +

(
e1̄

00 + e1̄
11

)
− 1√

p
b−
(
e1̄

00 + e1̄
11

)

− 2
(
e0̄

00 − e0̄
11

)
b− +

1√
p
k2b+

(
e1̄

00 + e1̄
11

)
+ 4(1 + k2)b+b−

+f−
(
e1̄

00 + e1̄
11

)
+

1

2
(1 + k2)

(
e1̄

00 − e1̄
11

) (
e1̄

00 + e1̄
11

)
− 1

2
√
p
(1 + k2)

(
e0̄

00 − e0̄
11

) (
e1̄

00 + e1̄
11

)
+ (2p − 1)b− + k2√pf +

+ k2(−6p + 1)b+ − √
pf− + (1 + k2)

(
2p +

1

2

)(
e0̄

00 − e0̄
11

)

− √
p(1 + k2)

(
e1̄

00 + e1̄
11

)
− 1

2

√
p(1 + k2)

(
e1̄

00 − e1̄
11

)
+ (−2p2 + p)(1 + k2) + λ. (49)

We have thus written each of the differential operators.(39),.(40),.(46) and.(47)
associated with the sphaleron model in terms of theq(2) generators. The Lie superalgebra
q(2) acts as a ‘spectrum generating superalgebra’ for this physical model. More precisely both
the sets of linear differential operators playing a role in the sphaleron model, those preserving
the vector space of 2-arrays of polynomials of degreesp − 1 andp − 1 on the one hand and
those preserving the vector space of 2-arrays of polynomials of degreesp andp − 2 on the
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other hand, correspond to realizations ofq(2) and make the determination ofλ possible. Such
a determination is relatively straightforward due to the fact that the (linear) Lie superalgebra
q(2) has a particularly simple structure, much simpler than the algebras used in previous
papers [20, 22] devoted to the calculation ofλ. Indeed in these papers, the algebraso(4)
(for .(39), .(40) and.(46)) as well as an associative (non-linear) graded algebra denoted
by A(2) (for .(47)) have been used for such a task and this required heavy techniques in
connection with the study [22] of the irreps of thisA(2). Such a simplification obtained by
consideringq(2) instead ofA(2) leads to the hope of a more direct diagonalization of the
operators connected withA(n) [22] by usingq(n).

6. Moszkowski model

We now turn to the Moszkowski model [23]. This is a two-level model, each of the levels
beingN-fold degenerate withNa particles of typea andNb particles of typeb. The state of
each particle is specified by the quantum numbersσ = ±1

2 (taking the value1
2 in the upper

level and−1
2 in the lower level) andq which refers to the particular degenerate state within a

given level. The corresponding Hamiltonian associated to the model reads [23]

HM = c (J0(a) − J0(b)) + V {Ĵ +, Ĵ−} (50)

wherec is the energy difference between the two levels andV denotes the interaction strength.
In (50), the operatorsJ0(a), J±(a) are defined according to

J0(a) = 1

2

∑
q

(
a+
q, 1

2
a−
q, 1

2
− a+

q,− 1
2
a−
q,− 1

2

)
(51)

J+(a) =
∑
q

a+
q, 1

2
a−
q,− 1

2
(52)

J−(a) =
∑
q

a+
q,− 1

2
a−
q, 1

2
(53)

wherea+
q,± 1

2
(a−

q,± 1
2
) denotes the creation (annihilation) operator of a particle of typea in the

stateq with σ = ±1
2. Similar definitions hold forJ0(b), J±(b) and we also have

Ĵ i = Ji(a) + Ji(b) i = 0,±. (54)

The operatorsJ0(i), J±(i) (i = a, b) satisfy theso(4) ≡ sl(2)⊕ sl(2) commutation relations

[J0(i), J±(j)] = ± δij J±(i) (55)

[J+(i), J−(j)] = 2δij J0(i) (i, j = a, b). (56)

Because of thissl(2) ⊕ sl(2) symmetry of the Moszkowski Hamiltonian, we can also expect
the q(2) Lie superalgebra to play a role within this model. Associating the operatorsJi

and Ki (i = 0,±) of (17) with the current operatorsJi(b) and Ji(a) respectively, we can
rewriteHM as

HM = c (K0 − J0) + V ({K+,K−} + {J+, J−} + 2J+K− + 2J−K+). (57)

According to (19), this can be rewritten as

HM = c

(
1√
p

(
e1̄

00 − e1̄
11

)
− 1

2

(
e0̄

00 − e0̄
11

))

+V

(
1

2
p2 − 1

2

(
e0̄

00 − e0̄
11

)2
+

√
p
(
e1̄

00 + e1̄
11

))
. (58)
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Although in principle the HamiltonianHM can be diagonalized using the expression (57) in
terms ofso(4)-generators, it turns out to be much simpler using the expression (58) in terms
of q(2)-generators together with the second differential realization (35) ofq(2). Then the
Hamiltonian becomes

HM = c

(
−x

d

dx
+

1

2
(p − 1) − 1

2
σ3

)
+ V

(
−2x2 d2

dx2 + (2p − 4)x
d

dx

+p + 2
d

dx
σ− + 2(p − 1)xσ+ − 2x2 d

dx
σ+

)
. (59)

Considering the action of this on the representation space (34), or equivalently, the action (28)
of (58) on the basis vectors (26)–(27), leads to an eigenvalue system that is almost trivial to
solve, i.e.

E+
0 = pV − (

1 − p
2

)
c

E±
k = −2V k(k − p) + c

(p
2 − k

)±
√
V 2p2 + c2 − 2(p − 2k)V c (k = 1,2, . . . , p − 1)

E+
p = pV +

(
1 − p

2

)
c.

Thus we have recovered the well known diagonalization of the Moszkowski Hamiltonian but
by using one of the differential realizations of the Lie superalgebraq(2). The latter can then
be considered as a ‘spectrum generating superalgebra’ of the Moszkowski model.

7. Jaynes–Cummings model

The well known Jaynes–Cummings Hamiltonian [24] is one of the diagonalizable
Hamiltonians of quantum optics. It describes a two-level atom interacting with a single-mode
radiation. Under the so-called rotating wave approximation for which only real transitions
(e.g. a photon is absorbed while the electron jumps from level 1 to level 2) are taken into
account, the Jaynes–Cummings Hamiltonian is

HJC = ω
(
a+a− + 1

2

)− 1
2ω0σ3 + g(a−σ− + a+σ+). (60)

Hereω is the field mode frequency,ω0 the atomic frequency whileg is a real coupling constant
and, as usual,a− anda+ denote the photon annihilation and creation operators, respectively.

In order to determine the spectrum ofHJC, one can use the irreducible representations
of the Lie superalgebrau(1, 1) as shown in [25]. We will prove in this section that
the Lie superalgebraq(2) can play a similar role and thus be considered as a ‘spectrum
generating superalgebra’ for the Jaynes–Cummings Hamiltonian. For this purpose, we shall
use the basis vectors (12)–(14) consisting of the states�k (k = 0,1, . . . , p) andχl (l =
1,2, . . . , p−1). This time, however, we shall consider the following realization of these basis
vectors:

�k =
(

pxp−k

(p − k)xp−k−1

)
(k = 0,1, . . . , p)

(61)

χl =
(

0
xp−l−1

)
(l = 1,2, . . . , p − 1)

as opposed to (23). This new realization of the basis states leads to a third differential
realization of theq(2)-generators given by
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b− = −x2 d

dx
+ (p − 1)x + xσ3 + σ− b+ = d

dx

e0̄
00 − e0̄

11 = 2x
d

dx
+ 1− p − σ3 e0̄

00 + e0̄
11 = p

(62)
f− = √

p(xσ3 + σ− − x2σ+) f + = √
pσ+

e1̄
00 − e1̄

11 = √
p(−σ3 + 2xσ+) e1̄

00 + e1̄
11 = 2√

p

(
p

2
σ3 +

d

dx
σ−
)
.

It has to be noticed that the realization of thesl(2) subalgebra generated byb−, b+ ande0̄
00 − e0̄

11
as defined in (62) coincides with the one performed in [26], but with other arguments. Taking
in the Hamiltonian (60) the realization

a+ = x a− = d

dx
(63)

we can expressHJCas

HJC = ω

2

(
e0̄

00 − e0̄
11

)
+

1

2
pω +

g

2

√
p
(
e1̄

00 + e1̄
11

)
+

1

2

g√
p

(
e1̄

00 − e1̄
11

)
+

1

2
(ω0 − ω + g(p − 1))σ3. (64)

From this equation it is clear that theq(2) superalgebra is a ‘spectrum generating superalgebra’
of the Jaynes–Cummings Hamiltonianprovided the detuning.(≡ ω − ω0) satisfies

. = g(p − 1). (65)

Suppose this is the case. Then the action of (64) on the basis elements�k andχ l follows
from (15) and (16). In fact,�0 and�p are directly eigenvectors ofHJC (with the eigenvalues
E+

0 andE+
p respectively), whereas the other eigenvectors are simple linear combinations of

�k andχk (k = 1,2, . . . , p − 1). Thus it is straightforward to recover the Jaynes–Cummings
spectrum, i.e.

E+
0 = ωp + 1

2(p + 1)g

E±
k = ω(p − k) ± g

√
1
4p

2 + 1
2p + 1

4 − k (k = 1,2, . . . , p − 1)

E+
p = 1

2(p − 1)g

where the positive integerp is arbitrary.
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